博客
关于我
Apache IoTDB源码解析(0.11.2版本):基本的数据结构解析(iotdb的内存表、存放的值)
阅读量:346 次
发布时间:2019-03-04

本文共 628 字,大约阅读时间需要 2 分钟。

IoTDB内存表模型与源码分析

1. 声明

本文旨在分享学习IoTDB源码的经历和收获,重点探讨其内存表的数据结构设计。所有内容源自于GitHub直接拉取的IoTDB开源项目源码。

2. AbstractMemTable源码分析

IoTDB采用HashMap作为内存表的基础数据结构,key为devcId(表示某个时序的前缀),value为另一个Map,用于存储时序后缀、时间戳集合以及数值集合。这种设计使得数据能够按照特定规则组织和检索。

3. IWritableMemChunk及子类源码解读

IWritableMemChunk类是IoTDB内存写入功能的核心实现,包含两个主要属性:MeasurementSchema(用于存储测点定义)和TVList(用于存储时序数据)。该类提供两种写入方式:单个数据写入和数组批量写入,分别通过相应的方法实现。

4. TVList及其子类分析

TVList位于org.apache.iotdb.db.utils.datastructure包下,作为时间序列数据的基础存储和排序接口。其子类BinaryTVList通过特定算法实现数据存储和索引计算,确保高效的时序数据管理和快速访问。

5. 内存表设计总结

IoTDB采用 HashMap管理内存表,devcId作为键,存储时序后缀及相关数据的Map作为值。TVList及其子类负责时序数据的存储和排序,通过两份数组分别管理时序和数值索引,确保数据的高效性和完整性。

转载地址:http://zcrh.baihongyu.com/

你可能感兴趣的文章
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>